信息科学与工程学院机构知识库

Institutional Repository, School of Information Science and Engineering

 

兰州大学机构库  > 信息科学与工程学院  > 期刊论文
题名: Image denoising via bivariate shrinkage function based on a new structure of dual contourlet transform
作者: Dong, M; Zhang, JW; Ma, YD(马义德)
收录类别: SCIE ; EI
出版日期: 2015-04
刊名: SIGNAL PROCESSING
卷号: 109, 页码:25-37
出版者: ELSEVIER
出版地: AMSTERDAM
英文摘要: Image denoising is a basic procedure of image processing, and the purpose of image denoising is to remove noises entirely and well preserve image boundaries and texture information simultaneously. However, conventional filtering methods easily lead to the loss of texture and details information. This paper proposes a new image denoising method to improve this problem, first proposing a new structure called dual contourlet transform (DCT) which is improved from contourlet transform and dual tree complex wavelet transform (DTCWT). The DCT employs a dual tree Laplacian Pyramid (LP) transform to improve the shift invariance and adopts directional filter banks (DFB) to achieve higher directional selectivity. Compared to other existing structures of multiresolution analysis, the main advantage of the DCT is that it not only possesses the advantages of other structures, but also it has simple structure and easy to implement. The most noteworthy is the redundancy of DCT is 8/3 at most; it is the envy of other existing structures. Second, after studying the distribution of DCT coefficients and the correlation between the interscale and intrascale dependencies, we take this account into denoising and use bivariate threshold function on DCT coefficients. Simulation experiments show that the proposed method achieves better performance than those outstanding denoising algorithms in terms of peak signal-to-noise ratio (PSNR), as well as visual quality. In addition, to verify the validity of our method, we give the difference between the original image and the denoised image that rarely used in other denoising literatures. (C) 2014 Published by Elsevier B.V.
关键词: Denoising ; Bivariate threshold function ; Dual contourlet transform ; Shift-invariance
作者部门: [Dong Min ; Zhang Jiuwen ; Ma Yide] Lanzhou Univ, Sch Informat Sci & Engn, Lanzhou 730000, Peoples R China
通讯作者: Ma, YD (reprint author), 222 Tianshui Rd South, Lanzhou 730000, Gansu, Peoples R China.
学科分类: Engineering
文章类型: Article
所属项目编号: National Natural Science Foundation of China [61175012, 61201421] ; Natural Science Foundation of Gansu Province [1208RJZA265] ; Specialized Research Fund for the Doctoral Program of Higher Education of China [20110211110026]
所属项目名称: 国家自然科学基金项目 ; 高等学校博士学科点专项科研基金 ; 甘肃省自然科学基金计划
项目资助者: NSFC ; MOE ; GSSTD
语种: 英语
DOI: 10.1016/j.sigpro.2014.10.017
ISSN号: 0165-1684
WOS记录号: WOS:000349426100003
EI记录号: 20144900282473
第一机构:
Citation statistics:
内容类型: 期刊论文
URI标识: http://ir.lzu.edu.cn/handle/262010/116287
Appears in Collections:信息科学与工程学院_期刊论文

Files in This Item:
File Name/ File Size Content Type Version Access License
Dong-2015-Image denoising via bivariate shrink.pdf(2352KB)----限制开放 联系获取全文

Recommended Citation:
Dong, M,Zhang, JW,Ma, YD. Image denoising via bivariate shrinkage function based on a new structure of dual contourlet transform[J]. SIGNAL PROCESSING,2015,109:25-37.
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Altmetrics Score
 
Google Scholar
Similar articles in Google Scholar
[Dong, M]'s Articles
[Zhang, JW]'s Articles
[Ma, YD]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[Dong, M]‘s Articles
[Zhang, JW]‘s Articles
[Ma, YD]‘s Articles
Related Copyright Policies
Null
Social Bookmarking
Add to CiteULike Add to Connotea Add to Del.icio.us Add to Digg Add to Reddit
所有评论 (0)
暂无评论
 
评注功能仅针对注册用户开放,请您登录
您对该条目有什么异议,请填写以下表单,管理员会尽快联系您。
内 容:
Email:  *
单位:
验证码:   刷新
您在IR的使用过程中有什么好的想法或者建议可以反馈给我们。
标 题:
 *
内 容:
Email:  *
验证码:   刷新

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.

 

 

Valid XHTML 1.0!
Email:
Passwd
验 证:
换一张
Have you forgotten your password? Log In
Copyright © 2007-2017  兰州大学 - Feedback
Powered by CSpace