兰州大学机构库 >大气科学学院
An approach to estimating and extrapolating model error based on inverse problem methods: towards accurate numerical weather prediction
Hu, SJ(胡淑娟); Qiu, CY; Zhang, LY; Huang, QC; Yu, HP; Chou, JF(丑纪范); Hu, SJ (reprint author), Lanzhou Univ, Coll Atmospher Sci, Lanzhou 730000, Peoples R China.
2014-08
Source PublicationCHINESE PHYSICS B
ISSN1674-1056
Volume23Issue:8Pages:089201-1-089201-9
AbstractModel error is one of the key factors restricting the accuracy of numerical weather prediction (NWP). Considering the continuous evolution of the atmosphere, the observed data (ignoring the measurement error) can be viewed as a series of solutions of an accurate model governing the actual atmosphere. Model error is represented as an unknown term in the accurate model, thus NWP can be considered as an inverse problem to uncover the unknown error term. The inverse problem models can absorb long periods of observed data to generate model error correction procedures. They thus resolve the deficiency and faultiness of the NWP schemes employing only the initial-time data. In this study we construct two inverse problem models to estimate and extrapolate the time-varying and spatial-varying model errors in both the historical and forecast periods by using recent observations and analogue phenomena of the atmosphere. Numerical experiment on Burgers' equation has illustrated the substantial forecast improvement using inverse problem algorithms. The proposed inverse problem methods of suppressing NWP errors will be useful in future high accuracy applications of NWP.
Keywordnumerical weather prediction model error past data inverse problem
Subject AreaPhysics
PublisherIOP
DOI10.1088/1674-1056/23/8/089201
Publication PlaceBRISTOL
Indexed BySCIE ; EI ; CSCD
Language英语
First Inst
Funding Project国家重点基础研究发展计划以及国家重大科学研究计划(973计划) ; 公益性行业科研专项 ; 中央高校基本科研业务费专项资金
Host of Journal中国科学院物理研究所 ; 中国物理学会
Project NumberSpecial Scientific Research Project for Public Interest [GYHY201206009] ; Fundamental Research Funds for the Central Universities, China [lzujbky-2012-13, lzujbky-2013-11] ; National Basic Research Program of China [2012CB955902, 2013CB430204]
WOS IDWOS:000343875300111
CSCD IDCSCD:5198263
Funding OrganizationMOST ; LZU
SubtypeArticle
EI ID20143318052456
IRIDCSCD0742
Department[Hu Shu-Juan;
Qiu Chun-Yu;
Huang Qi-Can;
Yu Hai-Peng;
Chou Ji-Fan] Lanzhou Univ, Coll Atmospher Sci, Lanzhou 730000, Peoples R China;
[Qiu Chun-Yu;
Zhang Li-Yun;
Huang Qi-Can] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Peoples R China
Citation statistics
Cited Times:2[WOS]   [WOS Record]     [Related Records in WOS]
Cited Times:2[CSCD]   [CSCD Record]
Document Type期刊论文
Identifierhttp://ir.lzu.edu.cn/handle/262010/119442
Collection大气科学学院
Corresponding AuthorHu, SJ (reprint author), Lanzhou Univ, Coll Atmospher Sci, Lanzhou 730000, Peoples R China.
Recommended Citation
GB/T 7714
Hu, SJ,Qiu, CY,Zhang, LY,et al. An approach to estimating and extrapolating model error based on inverse problem methods: towards accurate numerical weather prediction[J]. CHINESE PHYSICS B,2014,23(8):089201-1-089201-9.
APA Hu, SJ.,Qiu, CY.,Zhang, LY.,Huang, QC.,Yu, HP.,...&Hu, SJ .(2014).An approach to estimating and extrapolating model error based on inverse problem methods: towards accurate numerical weather prediction.CHINESE PHYSICS B,23(8),089201-1-089201-9.
MLA Hu, SJ,et al."An approach to estimating and extrapolating model error based on inverse problem methods: towards accurate numerical weather prediction".CHINESE PHYSICS B 23.8(2014):089201-1-089201-9.
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[Hu, SJ]'s Articles
[Qiu, CY]'s Articles
[Zhang, LY]'s Articles
Baidu academic
Similar articles in Baidu academic
[Hu, SJ]'s Articles
[Qiu, CY]'s Articles
[Zhang, LY]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Hu, SJ]'s Articles
[Qiu, CY]'s Articles
[Zhang, LY]'s Articles
Terms of Use
No data!
Social Bookmark/Share
File name: Hu-2014-An approach to estimating and extrapol.pdf
Format: Adobe PDF
No comment.
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.