公共卫生学院机构知识库

Institutional Repository, School of Public health

 

兰州大学机构库  > 公共卫生学院  > 期刊论文
题名: An incremental electric load forecasting model based on support vector regression
作者: Yang, YouLong; Che, JinXing; Li, YanYing; Zhao, YanJun; Zhu, SuLing
收录类别: SCIE ; EI
出版日期: 2016-10-15
刊名: Energy
卷号: 113, 页码:796-808
出版者: ELSEVIER
出版地: OXFORD
英文摘要: With the smart portable systems and the daily growth of databases on the web, there are ever-increasing requirements to learn the batch arriving and large sample data set. In this paper, an incremental learning model of support vector regression (SVR) is proposed to forecast the electric load under the batch arriving and large sample. For modeling with SVR, the optimal embedding of time series is constructed by phase space reconstruction (PSR). Then, an optimal training subset for the training of SVR is extracted based on the current data set, which enables us to cut the high time and space complexity by reducing the full training data set. When newly-increased data are added into the system, a representative data set reconstruction method is presented for quickly re-training the current SVR, and a nested particle swarm optimization (NPSO) framework is presented to select the parameters of the incremental SVR model. Experiments of incremental electric load forecasting demonstrate the computational superiority of the presented model over the comparison models. (C) 2016 Elsevier Ltd. All rights reserved.
关键词: Electric load forecasting ; Phase space reconstruction ; Support vector regression ; Representative data set reconstruction method ; Nested particle swarm optimization
作者部门: (1) School of Mathematics and Statistics, Xidian University, 266 Xinglong Section of Xifeng Road, Xi'an ; Shaanxi ; 710126, China ; (2) College of Mathematics and Information Science, Baoji University of Arts and Sciences, Baoji ; Shaanxi ; 721013, China ; (3) Humanities and Sciences College, Northeast Normal University, Changchun ; 130117, China ; (4) School of Public Health, Lanzhou University, Lanzhou ; 730000, China
通讯作者: Che, JX (reprint author), Xidian Univ, Sch Math & Stat, 266 Xinglong Sect Xifeng Rd, Xian 710126, Shaanxi, Peoples R China.
学科分类: Thermodynamics; Energy & Fuels
文章类型: Article
所属项目编号: National Natural Science Foundation of China [71301067, 61573266] ; Natural Science Foundation of JiangXi Province [20142BAB217015] ; National Social Science Foundation of China [12CTJ012] ; National Nature Science Foundation of China [61403290, 11561047] ; Science and Technology Project of Jiangxi Provincial Department of Education [GJJ151110] ; Foundation of Baoji University of Arts and Sciences [ZK15081]
所属项目名称: 国家自然科学基金项目 ; 国家社会科学基金青年项目
项目资助者: NSFC ; NSSFC
语种: 英语
DOI: 10.1016/j.energy.2016.07.092
ISSN号: 0360-5442
WOS记录号: WOS:000386410500070
EI记录号: 20163102669228
IR记录号: 20163102669228
第一机构:
Citation statistics:
内容类型: 期刊论文
URI标识: http://ir.lzu.edu.cn/handle/262010/179636
Appears in Collections:公共卫生学院_期刊论文

Files in This Item:

There are no files associated with this item.


Recommended Citation:
Yang, YouLong,Che, JinXing,Li, YanYing,et al. An incremental electric load forecasting model based on support vector regression[J]. Energy,2016,113:796-808.
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Altmetrics Score
 
Google Scholar
Similar articles in Google Scholar
[Yang, YouLong]'s Articles
[Che, JinXing]'s Articles
[Li, YanYing]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[Yang, YouLong]‘s Articles
[Che, JinXing]‘s Articles
[Li, YanYing]‘s Articles
Related Copyright Policies
Null
Social Bookmarking
Add to CiteULike Add to Connotea Add to Del.icio.us Add to Digg Add to Reddit
所有评论 (0)
暂无评论
 
评注功能仅针对注册用户开放,请您登录
您对该条目有什么异议,请填写以下表单,管理员会尽快联系您。
内 容:
Email:  *
单位:
验证码:   刷新
您在IR的使用过程中有什么好的想法或者建议可以反馈给我们。
标 题:
 *
内 容:
Email:  *
验证码:   刷新

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.

 

 

Valid XHTML 1.0!
Email:
Passwd
验 证:
换一张
Have you forgotten your password? Log In
Copyright © 2007-2017  兰州大学 - Feedback
Powered by CSpace