兰州大学机构库

Browse/Search Results:  1-4 of 4 Help

Selected(0)Clear Items/Page:    Sort:
Attention-Based Multilevel Co-Occurrence Graph Convolutional LSTM for 3-D Action Recognition 期刊论文
IEEE Internet of Things Journal, 2021, 卷号: 8, 期号: 21, 页码: 15990-16001
Authors:  Xu, Shihao;  Rao, Haocong;  Peng, H(彭宏);  Jiang, Xin;  Guo, Yi;  Hu, XP(胡希平);  Hu, B(胡斌)
Favorite  |  View/Download:2/0  |  Submit date:2021/12/14
Convolution  Convolutionalneuralnetworks  Internetofthings  Musculoskeletalsystem  Patientmonitoring  Co  occurrencefeatures  Co  occurrenceGraph  Convolutionalnetworks  Featureenhancement  Internetofthing(IOT)  Spatialrelationships  Structuralinformation  Surgicalassistance  
Augmented Skeleton Based Contrastive Action Learning with Momentum LSTM for Unsupervised Action Recognition 期刊论文
Information Sciences, 2021, 卷号: 569, 页码: 90-109
Authors:  Rao, Haocong;  Xu, Shihao;  Hu, XP(胡希平);  Cheng, Jun;  Hu, B(胡斌)
View  |  Adobe PDF(1305Kb)  |  Favorite  |  View/Download:26/0  |  Submit date:2021/06/18
3D skeleton  Action learning  Action recognition  Action representations  Contrastive learning  Learn+  Momentum LSTM  Skeleton based action recognition  Skeleton data augmentation  Unsupervised deep learning  3D skeleton  Action learning  Action recognition  Action representations  Contrastive learning  Learn+  Momentum LSTM  Skeleton based action recognition  Skeleton data augmentation  Unsupervised deep learning  
Multi-level co-occurrence graph convolutional LSTM for skeleton-based action recognition 会议论文
2020 IEEE International Conference on E-Health Networking, Application and Services, HEALTHCOM 2020
Authors:  Xu, Shihao;  Rao, Haocong;  Hu, XP(胡希平);  Hu, B(胡斌)
Favorite  |  View/Download:14/0  |  Submit date:2021/06/18
Convolution  Convolutional neural networks  Health  Musculoskeletal system  Patient monitoring  Co-occurrence features  Co-occurrence Graph  Context information  Convolutional networks  e-Health applications  Human-action recognition  Spatial relationships  Structural information  
Smartphone hypertension detector: Monitoring sleep behavior to detect possible hypertensive population 会议论文
2020 IEEE International Conference on E-Health Networking, Application and Services, HEALTHCOM 2020
Authors:  Fan, Junqiao;  Xu, Shihao;  Hu, XP(胡希平)
Favorite  |  View/Download:3/0  |  Submit date:2021/06/18
Sleep research  Smartphones  Detection methods  Global health  Large population  Mobile applications  Obstructive sleep apnea  Real world deployment  Sleep behavior  Strong correlation