| 正则图的k--因子覆盖与k--因子消去 |
Alternative Title | k--factor--covered and k--factor--deleted regular graphs
|
| 沈嘉 |
Thesis Advisor | 张和平
|
| 2002-05-12
|
Degree Grantor | 兰州大学
|
Place of Conferral | 兰州
|
Degree Name | 硕士
|
Keyword | 正则图
k--因子
|
Abstract | 一个图G称为k--因子覆盖的,如果G的任何边都属于G的某个k--因子。G称为k--因子消去的,若对任何边e , G-e含有一个k--因子。F. Babler 证明了任何r--正则, (r-1)--边连通的偶阶图是1--因子覆盖的.
我们证明了,(1) 若G为r--正则,(r-1)--边连通的偶阶图, 则对任何整数m,0f(v), 则G也是f--因子消去的. |
Other Abstract | A graph G is called k--factor--covered if each edge of G is contained in some k-factor.
A graph G is called k--factor--deleted if G-e containes a k--factor , for every edge e,
F. Babler proved that every r--regular, (r-1)--edge--connected graph of even order
is 1--factor--covered. In present article, we prove that
(1) If G is a r--regular and (r-1)--edge--connected graph of even order,
then G is m--factor--covered and m--factor--deleted for all integers m, 0f(v), for every vertex, then G is f--factor--deleted. |
URL | 查看原文
|
Language | 中文
|
Document Type | 学位论文
|
Identifier | https://ir.lzu.edu.cn/handle/262010/224362
|
Collection | 数学与统计学院
|
Recommended Citation GB/T 7714 |
沈嘉. 正则图的k--因子覆盖与k--因子消去[D]. 兰州. 兰州大学,2002.
|
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.