正则图的k--因子覆盖与k--因子消去 Alternative Title k--factor--covered and k--factor--deleted regular graphs 沈嘉 Thesis Advisor 张和平 2002-05-12 Degree Grantor 兰州大学 Place of Conferral 兰州 Degree Name 硕士 Keyword 正则图 k--因子 Abstract 一个图G称为k--因子覆盖的，如果G的任何边都属于G的某个k--因子。G称为k--因子消去的，若对任何边e , G-e含有一个k--因子。F. Babler 证明了任何r--正则, (r-1)--边连通的偶阶图是1--因子覆盖的. 我们证明了，(1) 若G为r--正则，(r-1)--边连通的偶阶图, 则对任何整数m,0f(v), 则G也是f--因子消去的. Other Abstract A graph G is called k--factor--covered if each edge of G is contained in some k-factor. A graph G is called k--factor--deleted if G-e containes a k--factor , for every edge e, F. Babler proved that every r--regular, (r-1)--edge--connected graph of even order is 1--factor--covered. In present article, we prove that (1) If G is a r--regular and (r-1)--edge--connected graph of even order, then G is m--factor--covered and m--factor--deleted for all integers m, 0f(v), for every vertex, then G is f--factor--deleted. URL 查看原文 Language 中文 Document Type 学位论文 Identifier https://ir.lzu.edu.cn/handle/262010/224362 Collection 数学与统计学院 Recommended CitationGB/T 7714 沈嘉. 正则图的k--因子覆盖与k--因子消去[D]. 兰州. 兰州大学,2002.
 Files in This Item: There are no files associated with this item.
 Related Services Recommend this item Bookmark Usage statistics Export to Endnote Altmetrics Score Google Scholar Similar articles in Google Scholar [沈嘉]'s Articles Baidu academic Similar articles in Baidu academic [沈嘉]'s Articles Bing Scholar Similar articles in Bing Scholar [沈嘉]'s Articles Terms of Use No data! Social Bookmark/Share
No comment.
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.