| 有限元等级及非线性Galerkin方法----Ginzberg-Landau方程及其数值计算 |
Alternative Title | Finite Element Hierarchical Basis Nonlinear Galerkin Methods---Ginzberg_Landau equations and its Numerical Computations
|
| 赵廷刚 |
Thesis Advisor | 伍渝江
|
| 2002-05-12
|
Degree Grantor | 兰州大学
|
Place of Conferral | 兰州
|
Degree Name | 硕士
|
Keyword | Ginzburg-Landau方程
近似惯性流形
非线性Galerkin
|
Abstract | 本文讨论了Ginzburg-Landau方程的不同的近似惯性流形下的几种数值计算方法------非线性Galerkin方法,给出了各种方法的收敛性.之后,用有限元等级基离散技术实现了这种非线性Galerkin方法.我们在微机上作了数值实验,计算结果也验证了这种非线性Galerkin方法的有效性. |
Other Abstract | For numerical computation of Ginzburg—Landau equations, several schemes, which come from various approximate inertial manifolds, were discussed in this paper. That is, we called them nonlinear Galerkin methods. We present the convergence of the nonlinear Galerkin method. Following that, we showed the efficiency of the nonlinear Galerkin method after using finite element hierarchical basis to discrete the problem and programming it on pc computer. |
URL | 查看原文
|
Language | 中文
|
Document Type | 学位论文
|
Identifier | https://ir.lzu.edu.cn/handle/262010/224379
|
Collection | 数学与统计学院
|
Recommended Citation GB/T 7714 |
赵廷刚. 有限元等级及非线性Galerkin方法----Ginzberg-Landau方程及其数值计算[D]. 兰州. 兰州大学,2002.
|
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.