| 一类具有临界非线性项的Kirchhoff问题的可解性 |
Alternative Title | The solvability of a class of Kirchhoff problem with critical nonlinearity
|
| 崔秀芳 |
Thesis Advisor | 赵培浩
|
| 2016-05-28
|
Degree Grantor | 兰州大学
|
Place of Conferral | 兰州
|
Degree Name | 硕士
|
Keyword | Kirchhoff 问题
Sobolev 临界指数
集中紧性
山路引理
|
Abstract | 本文将在带有光滑边界的有界区域 Omega 中研究问题Kirchhoff
证明了当p=(n-2)/(n+2),λ充分大时,对于任意的包含 C 的凸集 H,存在函数,使得方程存在一个局部的正的能量极小解. 此外, 将上述的问题一般化为
其中,G 为g的原函数.我们证明了当f满足一定条件以及 λ充分大, 方程存在局部的正的极小能量解. |
Other Abstract | In this paper, we study the following Kirchhoff problem
In the smooth bounded domain . We prove that when p=(n-2)/(n+2) and λ is large enough, for each convex sets C which including H, there is a function such that the above problem has a positive local minimal energy solution. Besides, we extend the above theorem to more general case, we let
For each convex sets C include H , then the same conclusion holds true for the following problem
When the f satisfied the condition and also has the restrication , when λ is large enough. |
URL | 查看原文
|
Language | 中文
|
Document Type | 学位论文
|
Identifier | https://ir.lzu.edu.cn/handle/262010/224477
|
Collection | 数学与统计学院
|
Recommended Citation GB/T 7714 |
崔秀芳. 一类具有临界非线性项的Kirchhoff问题的可解性[D]. 兰州. 兰州大学,2016.
|
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.