| 一类p-laplace方程基态解的存在性 |
Alternative Title | Existence of ground states for a class of 𝑝p-Laplace equations
|
| 李多瑞 |
Thesis Advisor | 赵敦
|
| 2015-05-29
|
Degree Grantor | 兰州大学
|
Place of Conferral | 兰州
|
Degree Name | 硕士
|
Keyword | p-Laplace 方程
基态解
位势能量的弱连续性
Nehari流形
|
Abstract | 本文主要讨论了R^n(n≥3)上如下一类p-Laplace方程:
-∆_p u(x)+V(x) |u|^(p-2) u(x)-|u|^(q-2) u(x)=0.
在V(x)和K(x)满足一定的可积性与有界性条件下,运用Nehari流形技巧和位势能量的弱连续性质,证明了基态解的存在性。 |
Other Abstract | We investigate the existence of the ground states for a class of p-Laplace equations:
-∆_p u(x)+V(x) |u|^(p-2) u(x)-|u|^(q-2) u(x)=0.
Under some conditions on integrability and boundedness of V (x)and K(x), by combining the weak continuity of the
potential energies with the Nehari manifold approach, theexistence of the ground state solution is proved. |
URL | 查看原文
|
Language | 中文
|
Document Type | 学位论文
|
Identifier | https://ir.lzu.edu.cn/handle/262010/224532
|
Collection | 数学与统计学院
|
Recommended Citation GB/T 7714 |
李多瑞. 一类p-laplace方程基态解的存在性[D]. 兰州. 兰州大学,2015.
|
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.