修正罗巴代数和修正三叶型代数 | |
Alternative Title | Modified Rota-Baxter algebras and modified tridendriform algebras |
李华兴 | |
Thesis Advisor | 高兴 |
2018-03-01 | |
Degree Grantor | 兰州大学 |
Place of Conferral | 兰州 |
Degree Name | 硕士 |
Keyword | 修正罗巴代数 修正三叶型代数 伴随函子 泛包络代数 operad |
Abstract | 本文中, 我们研究了(结合)修正罗巴代数和修正三叶型代数, 重点在于研究修正罗巴代数范畴与修正三叶型代数范畴之间的关系. 修正罗巴代数算子的形式类似于修正杨-巴克斯特方程, 是罗巴代数算子的推广. 作为每个罗巴代数可以诱导出一个叶型代数这一著名事实的推广, 我们得出了每个修正罗巴代数可以诱导出一个修正三叶型代数, 进一步构造出修正三叶型代数的泛包络罗巴代数. 运用operads 与修正三叶型代数的联系, 给出修正三叶型代数满足的所有的二元关系. 全文共分为四章. |
Other Abstract | In this paper, we mainly study (associative) modified Rota-Baxter algebras and modified tridendriform algebras, with emphasis on the relationship between the categories of modified Rota-Baxter algebras and the categories of modified tridendriform algebras. As a generalization of Rota-Baxter operator, the form of the modified Rota-Baxter operator is similiar to the modified classical Yang-Baxter equation. By generalizingthe well-known fact that every Rota-Baxter algebra gives a dendriform algebra, we obtain that every modified Rota-Baxter algebra gives a modified tridendriform algebra, further we construct the universal enveloping modified Rota-Baxter algebra of a modified tridendriform algebra. Applying the relationship between operads and modified tridendriform algebras, we further obtain all the quadratic nonsymmetric relations that modified tridendriform algebra satisfy. And this thesis consists of four chapters. The first chapter introduces the background and its recent development, and gives some basic notions and related notations. The second chapter reviews an explicit construction of free modified Rota-Baxter algebras by bracketed words. We consider both the cases when the free modified Rota-Baxter algebra is generated by a set and by another algebra. The third chapter first reviews the definition and related conclusion of modified tridendriform algebras, we obtain the relationship between the modified Rota-Baxter algebras and the modified tridendriform algebras, further we obtain the natural functor |
URL | 查看原文 |
Language | 中文 |
Document Type | 学位论文 |
Identifier | https://ir.lzu.edu.cn/handle/262010/224558 |
Collection | 数学与统计学院 |
Recommended Citation GB/T 7714 | 李华兴. 修正罗巴代数和修正三叶型代数[D]. 兰州. 兰州大学,2018. |
Files in This Item: | There are no files associated with this item. |
|