| 无穷区间上的分数阶微分方程边值问题的解 |
Alternative Title | Solutions for boundary value problems of fractional differential equations on an infinite interval
|
| 杨凯军 |
Thesis Advisor | 孙红蕊
|
| 2013-05-24
|
Degree Grantor | 兰州大学
|
Place of Conferral | 兰州
|
Degree Name | 硕士
|
Keyword | 分数阶方程
无穷区间
不动点理论
存在性
相对紧集
解
|
Abstract | 本文主要研究了三类定义在无穷区间上的分数阶微分方程(组)边值问题解的存在性.
通过分别选取相应合适的Banach空间,讨论其上相对紧集的判定准则,构造相应的全连续算子,借助于不动点理论,建立了解的存在性准则. |
Other Abstract | This thesis is mainly concerned with the existence of solutions of the following three classes boundary value problems .
existence criteria of solution are established by choosing corresponding suitable Banach spaces, discussing the sufficient condition of relatively compact , constructing the corresponding completely continuous operators and applying fixed point theory. |
URL | 查看原文
|
Language | 中文
|
Document Type | 学位论文
|
Identifier | https://ir.lzu.edu.cn/handle/262010/224585
|
Collection | 数学与统计学院
|
Recommended Citation GB/T 7714 |
杨凯军. 无穷区间上的分数阶微分方程边值问题的解[D]. 兰州. 兰州大学,2013.
|
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.