| 椭圆和抛物方程的几类不适定问题 |
Alternative Title | Some ill-posed problems for elliptic and parabolic equations
|
| 冯晓莉 |
Thesis Advisor | 傅初黎
|
| 2010-12-11
|
Degree Grantor | 兰州大学
|
Place of Conferral | 兰州
|
Degree Name | 博士
|
Keyword | 不适定问题
抛物方程时间反向问题
椭圆方程 Cauchy 问题
条件稳定性
正则化方法
预条件
左预处理的广义最小残量方法
快速直接算法
|
Abstract | 本文考虑了线性椭圆和抛物方程的几类不适定问题:包括抛物方程时间反向问题和椭圆方程 Cauchy 问题,这些问题都是严重不适定的。
对一些比较困难的变系数问题,我们给出了若干条件稳定性结果。
对大部分其他问题,我们均建立了相应的正则化方法,这些方法包括 Tikhonov 方法,截断方法和拟边界值方法。对每种方法,我们都给出了正则化参数的选取规则,给出了误差估计,提供了相应的算法,给出了若干数值例子。特别是对于拟边界值方法,我们还做了进一步的深入分析,从中总结出一些性质,这些性质可以用于其他不适定问题的研究。
在数值实现中我们主要使用了有限差分方法和快速 Fourier 变换技巧。对于具有变系数的椭圆方程 Cauchy 问题,由于其不适定程度更强以及离散后所得到的线性方程组的维数庞大使得数值实现变得尤为困难,所以我们对其三维情形的数值实现专门进行了研究。我们用左预处理的广义最小残量方法结合拟边界值方法对其进行处理,其中一个有效的预条件矩阵被构造,一个快速直接算法也被提出,从而使得广义最小残量方法能够很好的被使用。
本文的数值结果与理论结果是完全相符的,这些数值结果充分地体现了所给的正则化方法能够很好地求解这些不适定问题。 |
Other Abstract | In this thesis, we consider some ill-posed problems of linear elliptic and parabolic equations, i.e., Backward parabolic equation in time and Cauchy problems of elliptic equation.
For some difficult variable coefficient cases, several conditional stability results are given.
Some regularization methods including Tikhonov regularization method, Cut-Off regularization method and Quasi-Boundary-Value method are used for these ill-posed problems respectively. A-priori choice rule for all regularization methods and a-posteriori choice rule for some of them are given. All corresponding error estimates are obtained. About the Quasi-Boundary-Value method, we give some properties after observing its applications. These properties are helpful for dealing with other ill-posed problems.
In the numerical aspect, we use the finite difference method and the Fast Fourier Transform to implement all regularization methods for both the constant coefficient and variable coefficient cases. For the variable coefficient case of elliptic Cauchy problem, we consider its three dimensional numerical implementation since it is more ill-posed and the coefficient matrix of the linear system is huge. A Left-Preconditioned GMRES method is used. A good preconditioner is constructed and a fast direct solver is also given to make the GMRES method work well.
The numerical results are consistent with the theoretical results. These results show that our regularization methods for these ill-posed problems work effectively. |
URL | 查看原文
|
Language | 中文
|
Document Type | 学位论文
|
Identifier | https://ir.lzu.edu.cn/handle/262010/224609
|
Collection | 数学与统计学院
|
Recommended Citation GB/T 7714 |
冯晓莉. 椭圆和抛物方程的几类不适定问题[D]. 兰州. 兰州大学,2010.
|
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.