时间分数阶扩散方程和扩散波方程源项辨识 | |
Alternative Title | Inverse space-dependent source problem for a time fractional diffusion equation and a diffusion wave equation |
燕雄斌 | |
Thesis Advisor | 魏婷 |
2017-11-30 | |
Degree Grantor | 兰州大学 |
Place of Conferral | 兰州 |
Degree Name | 硕士 |
Keyword | 反演空间源项 Tikhonov正则化 唯一性 共轭梯度算法 最佳摄动算法 |
Abstract | 本文分两部分。第一部分研究了用伴随问题的方法来求解时间分数阶扩散方程中反演空间依赖源项的问题。由正问题解的级数表达式,我们得到了解的更高的正则性估计。然后我们用Tikhonov正则化方法求解反源问题,并且采用共轭梯度算法求解Tikhonov泛函的极小元。一维和二维的数值算例验证了该算法的有效性。 第二部分主要考虑了多维情形下的时间分数阶扩散波方程用带有噪音的边界数据反演空间源项的问题。由正问题解的表达式,我们得到了在更高的条件下正问题解的正则性。同时,通过Tichmarsh convolution定理和齐次化原理我们证明了反源问题的唯一性。进一步我们用最佳摄动算法求解反源问题。一维的数值算例说明了算法的有效性。 |
Other Abstract | ~This paper divide two parts. In the first part, we consider an inverse space-dependent source problem for a time-fractional diffusion equation by an adjoint problem approach. Based on the series expression of the solution for the direct problem, we improve the regularity of the weak solution for the direct problem under strong conditions. And we provide the existence and uniqueness for the adjoint problem. Further, we use the Tikhonov regularization method to solve the inverse source problem and provide a conjugate gradient algorithm to find an approximation to the minimizer of the Tikhonov regularization functional. Numerical examples in one-dimensional and two-dimensional cases are provided to show the effectiveness of the proposed method. |
URL | 查看原文 |
Language | 中文 |
Document Type | 学位论文 |
Identifier | https://ir.lzu.edu.cn/handle/262010/224713 |
Collection | 数学与统计学院 |
Recommended Citation GB/T 7714 | 燕雄斌. 时间分数阶扩散方程和扩散波方程源项辨识[D]. 兰州. 兰州大学,2017. |
Files in This Item: | There are no files associated with this item. |
|