| 时间分数阶扩散方程的Cauchy问题 |
Alternative Title | The Cauchy problem for a time-fractional diffusion equation
|
| 李红波 |
Thesis Advisor | 魏婷
|
| 2015-05-29
|
Degree Grantor | 兰州大学
|
Place of Conferral | 兰州
|
Degree Name | 硕士
|
Keyword | Cauchy 问题
Cauchy 数据
变分问题
共轭梯度法
|
Abstract | 本文中,我们考虑时间分数阶扩散方程的Cauchy问题,即由一部分边界上的Cauchy数据决定另一部分边界上的Cauchy数据。我们首先把此反问题转化成一个变分问题,构造出一个正则化泛函,然后借助灵敏度问题和伴随问题求此泛函的梯度,最后用共轭梯度法求解这个变分问题。在反问题的求解过程中,会涉及到相应正问题的计算方法,我们使用有限差分方法解决每一步迭代的正问题。数值举例表明这种方法是有效并且稳定的。 |
Other Abstract | In this paper, we consider a Cauchy problem of the time fractional diffusion equation for determining the Cauchy data at one part of the boundary from the Cauchy data at the other part. The variational formulation of the problem is given. And we deduce the gradient of the regularization functional based on a sensitivity problem and an adjoint problem. Then the conjugate gradient method is proposed for solving the variational problem, in which the finite difference method is used to solve the direct problem. Several numerical examples are provided to show the effectiveness and robustness of the proposed method. |
URL | 查看原文
|
Language | 中文
|
Document Type | 学位论文
|
Identifier | https://ir.lzu.edu.cn/handle/262010/224718
|
Collection | 数学与统计学院
|
Recommended Citation GB/T 7714 |
李红波. 时间分数阶扩散方程的Cauchy问题[D]. 兰州. 兰州大学,2015.
|
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.