兰州大学机构库 >数学与统计学院
时间分数阶 Navier-Stokes时滞微分包含的适度解
Alternative TitleMild Solutions to The Time Fractional Navier-Stokes Delay Differential Inclusions
梁彤彤
Thesis Advisor王业娟
2018-03-08
Degree Grantor兰州大学
Place of Conferral兰州
Degree Name硕士
Keyword分数阶时滞微分包含 Navier-Stokes方程 适度解 奇异初始值 非紧性测度 上半连续性.
Abstract

本文研究了具有 \alpha\in(0,1) 阶时间分数导数的 Navier-Stokes 时滞微分包含. 首先, 我们利用分数阶豫解算子理论和一些非紧性测度的技巧, 证明了当初值在 C([-h,0];D(A_r^\varepsilon)) 时, 适度解的局部存在性, 全局存在性, 衰减性以及正则性. 然后我们给出了一个例子,来说明我们结果的可适用性。

Other Abstract

In this paper, we study a Navier-Stokes delay differential inclusion with time fractional derivative of order \alpha\in(0,1). We first prove the local and global existence, decay and regularity properties of mild solutions when the initial data belongs to C([-h,0];D(A_r^\varepsilon)). The fractional resolvent operator theory and some techniques of measure of noncompactness are successfully applied to obtain the results.  An example is also given to illustrate the feasibility of our abstract results.

URL查看原文
Language中文
Document Type学位论文
Identifierhttps://ir.lzu.edu.cn/handle/262010/224719
Collection数学与统计学院
Recommended Citation
GB/T 7714
梁彤彤. 时间分数阶 Navier-Stokes时滞微分包含的适度解[D]. 兰州. 兰州大学,2018.
Files in This Item:
There are no files associated with this item.
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[梁彤彤]'s Articles
Baidu academic
Similar articles in Baidu academic
[梁彤彤]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[梁彤彤]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.