时间分数阶 Navier-Stokes时滞微分包含的适度解 | |
Alternative Title | Mild Solutions to The Time Fractional Navier-Stokes Delay Differential Inclusions |
梁彤彤 | |
Thesis Advisor | 王业娟 |
2018-03-08 | |
Degree Grantor | 兰州大学 |
Place of Conferral | 兰州 |
Degree Name | 硕士 |
Keyword | 分数阶时滞微分包含 Navier-Stokes方程 适度解 奇异初始值 非紧性测度 上半连续性. |
Abstract | 本文研究了具有 \alpha\in(0,1) 阶时间分数导数的 Navier-Stokes 时滞微分包含. 首先, 我们利用分数阶豫解算子理论和一些非紧性测度的技巧, 证明了当初值在 C([-h,0];D(A_r^\varepsilon)) 时, 适度解的局部存在性, 全局存在性, 衰减性以及正则性. 然后我们给出了一个例子,来说明我们结果的可适用性。 |
Other Abstract | In this paper, we study a Navier-Stokes delay differential inclusion with time fractional derivative of order \alpha\in(0,1). We first prove the local and global existence, decay and regularity properties of mild solutions when the initial data belongs to C([-h,0];D(A_r^\varepsilon)). The fractional resolvent operator theory and some techniques of measure of noncompactness are successfully applied to obtain the results. An example is also given to illustrate the feasibility of our abstract results. |
URL | 查看原文 |
Language | 中文 |
Document Type | 学位论文 |
Identifier | https://ir.lzu.edu.cn/handle/262010/224719 |
Collection | 数学与统计学院 |
Recommended Citation GB/T 7714 | 梁彤彤. 时间分数阶 Navier-Stokes时滞微分包含的适度解[D]. 兰州. 兰州大学,2018. |
Files in This Item: | There are no files associated with this item. |
|