全空间上一类带有 p-Laplacian 的双调和方程的多解性 | |
Alternative Title | Multiplicity of nontrivial solutions for biharmonic equations with p-Laplacian in R^{N} |
杨荣荣 | |
Thesis Advisor | 赵培浩 |
2018-03-20 | |
Degree Grantor | 兰州大学 |
Place of Conferral | 兰州 |
Degree Name | 硕士 |
Keyword | 双调和方程 p-Laplacian Gagliardo-Nirenberg 不等式 山路引理 Ekeland 变分原理 |
Abstract | 本文主要研究的是全空间上一类带有 p-Laplacian 的双调和问题的多解性,。通过建立参数之间的相互限制,得到该问题至少有两个非平凡的解,其证明主要是在 Gagliardo-Nirenberg 不等式的基础上运用山路引理和 Ekeland 变分原理得到的。 |
Other Abstract | In this paper,we mainly study a class of biharmonic equations with p-Laplacian.We obtain the existence of two solutions of the problem by establishing the mutual restriction . The proof is mainly obtained by using the Mountain Pass theorem and Ekeland variational principle on the basis of Gagliardo-Nirenberg inequality. |
URL | 查看原文 |
Language | 中文 |
Document Type | 学位论文 |
Identifier | https://ir.lzu.edu.cn/handle/262010/224780 |
Collection | 数学与统计学院 |
Recommended Citation GB/T 7714 | 杨荣荣. 全空间上一类带有 p-Laplacian 的双调和方程的多解性[D]. 兰州. 兰州大学,2018. |
Files in This Item: | There are no files associated with this item. |
|