兰州大学机构库 >数学与统计学院
抛物型方程和空间分数阶扩散方程的两个高阶方法研究
Alternative TitleOn High Order Methods for Solving Parabolic Equation and Space Fractional Diffusion Equations
周晗
Thesis Advisor伍渝江
2013-05-19
Degree Grantor兰州大学
Place of Conferral兰州
Degree Name硕士
KeywordRichardson外推算法 紧ADI格式 抛物方程 Riemann-Liouville分数阶导数 拟紧致差分格式 稳定性和收敛性 空间分数阶方程
Abstract本文主要探索高阶有限差分方法求解二维抛物型方程,一维和二维空间分数阶扩散方程。在第一章,我们构造了抛物方程的紧致的ADI格式,得到了关于空间方向四阶收敛和时间方向二阶收敛。进一步地,我们设计关于时间和空间的Richardson外推算法,将空间和时间方向的收敛阶提高为六阶。并给出了数值格式的最大模范数的误差估计。在第二章,我们基于WSGD算子,建立了CWSGD算子逼近Riemann-Liouville分数阶导数,并且将其运用于构造差分格式数值求解一维和二维空间分数阶扩散方程,得到关于空间方向三阶收敛。我们给出了格式的无条件稳定性和离散的L^2范数下的收敛性证明。
Other AbstractIn this paper we mainly consider the high order finite difference method for solving parabolic equation of two-dimensional and space fractional diffusion equations of one-dimensional and two-dimensional. In the first chapter we construct the compact ADI scheme of parabolic equation. And we achieve the fourth order accuracy and second order accuracy with respect to space and time dimensions, respectively. Furthermore, we design the Richardson extrapolation approach to improve the accuracy order of both time and space to six order. In the second chapter, based on the WSGD operators, we build the CWSGD operators to approximate the Riemann-Liouville fractional derivatives. And we apply them to construct the finite difference schemes for solving one-dimensional and two-dimensional space fractional diffusion equations. The third order accuracy of space direction is obtained. we give the unconditional stability and the convergence with respect to the discrete L^2 norm of the schemes.
URL查看原文
Language中文
Document Type学位论文
Identifierhttps://ir.lzu.edu.cn/handle/262010/224828
Collection数学与统计学院
Recommended Citation
GB/T 7714
周晗. 抛物型方程和空间分数阶扩散方程的两个高阶方法研究[D]. 兰州. 兰州大学,2013.
Files in This Item:
There are no files associated with this item.
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[周晗]'s Articles
Baidu academic
Similar articles in Baidu academic
[周晗]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[周晗]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.