兰州大学机构库 >数学与统计学院
两类Mobius带上六角系统的共振图
Alternative TitleThe resonance graphs of two classes of hexagonal systems on Mobius strips
赵海秀
Thesis Advisor张和平
2016-06-03
Degree Grantor兰州大学
Place of Conferral兰州
Degree Name硕士
Keyword六角系统 共振图 Fibonacene Mobius带
Abstract六角系统是2-连通的平面二部图且它的每个内面都是一个正六角形, 其共振图反映了它的完美匹配的整体结构. Fibonacenes 是六角系统中的一类图. S. Klavžar和P. Žigert Pleter在2005年证明了, 任意一个含有n个六角形的 fibonacene, 它的共振图同构于斐波那契立方.在这篇论文中, 我们讨论了 Möbius带上含有n个六角形的 fibonacene 的共振图且证明了: 当n为奇数时, 其共振图同构于卢卡斯立方和两个孤立点的并; 当n为偶数时, 其共振图同构于卢卡斯立方. 进一步, 我们证明了一类 Möbius 带上六角形链的共振图同构于超立方的子图和两个孤立点的并.
Other AbstractHexagonal systems are 2-connected bipartite plane graphs with every inner face a positive hexagon and their resonance graphs reflect the massive structure of their perfect matchings. Fibonacenes are a class of graphs in hexagonal systems. In 2015, S. Klavžar and P. Žigert Pleter have proved that the resonance graph of an arbitrary fibonacene with n hexagons is isomorphic to the Fibonacci cube.In this paper, we consider the resonance graph of the fibonacene with n hexagons on the Möbius strips and prove that: it is isomorphic to the union of the Lucuas cubic and two isolated vertices if n is odd, and the Lucuas cubic if n is even. Futhermore, we show that the resonance graph of a class of the hexagonal chain on the Möbius strip is isomorphic to a subgraph of the hypercube and two isolated vertices.
URL查看原文
Language中文
Document Type学位论文
Identifierhttps://ir.lzu.edu.cn/handle/262010/224912
Collection数学与统计学院
Recommended Citation
GB/T 7714
赵海秀. 两类Mobius带上六角系统的共振图[D]. 兰州. 兰州大学,2016.
Files in This Item:
There are no files associated with this item.
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[赵海秀]'s Articles
Baidu academic
Similar articles in Baidu academic
[赵海秀]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[赵海秀]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.