兰州大学机构库 >数学与统计学院
交叉单稳型Nicholson模型行波解的稳定性
Alternative TitleStability of Traveling Waves in Nicholson's Model With Crossing-monostability
张海波
Thesis Advisor李万同
2012-05-27
Degree Grantor兰州大学
Place of Conferral兰州
Degree Name硕士
KeywordNicholson模型 行波解 指数稳定性 交叉单稳 加权能量方法
AbstractNicholson苍蝇模型是在Nicholson所做的澳大利亚铜绿蝇的实验研究中所导出的一类重要的反应扩散方程,已被许多学者广泛研究。 而在反应扩散方程的研究中,行波解是一个重要课题, 行波解可以很好地刻画以有限速度传播问题和振荡现象。 因此,本文主要研究如下带有非局部时滞的Nicholson模型行波解的稳定性: \frac{\partial u(x,t)}{\partial t}=D\triangle u(x,t)-\gamma u(x,t)+\int_{-\infty}^{\infty}f_{\alpha}(y)b(u(x-y,t-\tau))dy,x\in \Bbb{R} 其中$b(u)=pue^{-au}$。当非线性项为单稳($1<\frac{p}{\gamma}\leq e$)时,行波解的稳定性可以用加权能量方法结合比较原理得到。但当非线性项为交叉单稳($\frac{p}{\gamma}>e$)时, 此时比较原理不再适用,我们将用加权能量方法结合连续性方法来考虑行波解的稳定性。本文在假设$e<\frac{p}{\gamma}< e^{\frac{9}{5}}$下,首先给出该方程相应的Cauchy问题解的局部存在性,利用加权能量方法建立解的先验估计。然后在解的局部存在性和先验估计的基础上,用连续性方法证明了该方程在小初始扰动(即在行波解附近的初始扰动在一个加权范数意义下是适当小的)下,大波速行波解的指数稳定性。
Other AbstractIn the study of reaction-diffusion equations, traveling wave solution is an important topic, which can well describe the propagation with finite speed and the oscillations. But when the nonlinear term is crossing-monostable (~$\frac{p}{\gamma}>e$~), the comparison principle is no longer applicable. So we'll consider the stability of the traveling waves by means of the weighted energy method combining continuation method. In this paper under the assumption of $e<\frac{p}{\gamma}< e^{\frac{9}{5}}$, we first state the local existence of solutions of the Cauchy problem for the equation, and establish a priori estimate with the weighted energy method. Then based on the local existence and the priori estimate of solutions, we apply the continuation method to prove the exponential stability of the traveling waves with large speed under the so-called small initial perturbation .
URL查看原文
Language中文
Document Type学位论文
Identifierhttps://ir.lzu.edu.cn/handle/262010/225020
Collection数学与统计学院
Recommended Citation
GB/T 7714
张海波. 交叉单稳型Nicholson模型行波解的稳定性[D]. 兰州. 兰州大学,2012.
Files in This Item:
There are no files associated with this item.
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[张海波]'s Articles
Baidu academic
Similar articles in Baidu academic
[张海波]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[张海波]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.