基于融合模型的电影推荐算法研究 | |
Alternative Title | Research on Film Recommendation Algorithm Based on Fusion Model |
潘娜 | |
Thesis Advisor | 陈进源 |
2018-03-01 | |
Degree Grantor | 兰州大学 |
Place of Conferral | 兰州 |
Degree Name | 硕士 |
Keyword | 推荐算法 加权融合 协同过滤 电影推荐 基于图的推荐模型 |
Abstract | 随着社会的发展、科技的进步, 在日常生活中人们与互联网互动的频率越来越高, 通过互联网站或移动电子设备来观看视频、MV、歌曲及其他的娱乐节目越来越成为人们打发闲暇时间的一种普遍方式. 与此同时为了迎合受众的喜好, 各类电影、视频等项目在互联网平台上多如牛毛般的呈现在观众面前, 逐渐的人们从以前获得娱乐信息困难到现在信息爆炸式增长让人应接不暇的这种状态被我们称之为信息过载. 在现如今信息过载的时代, 对于消费者而言如何在充斥着其他非必需的繁多的信息中找到自己真正需要的, 而不被其他的信息所干扰和误导, 对于信息的生产者而言如何在众多的信息中崭露头角, 能够受到普罗大众的重视, 都是现在所面临的挑战. 推荐系统就是解决上述信息过载问题的一种有效措施. 推荐系统的基本任务是连接物品与用户, 解决信息过载的问题, 通过不同的推荐算法用特定的方式将用户与物品相联系, 从而达到针对不同的用户, 根据其兴趣为其提供个性化的推荐. |
Other Abstract | With the development of society and the progress of science and technology, the proportion of people interacting with the Internet in daily life is increasing. Watching videos, MVs, listening songs, and other entertainment programs through Internet sites or mobile electronic devices are becoming common ways for the general public to spend their leisure time. At the same time, in order to cater to popular taster , various kinds of films, videos, and other items that are presented in front of the audience in various major Internet platforms. Gradually, people have changed from the lack of information and entertainment to the explosion of information. This state is what we call information overload. In the current era of information overload, how do consumers find what they really need in the flood of other non-essential information, without being disturbed and misled by other information. how do producer show up prominently and be valued by the general public, are now challenges for us. The recommendation system is to give an effective solution to the above problem of information overload. The basic task of the recommendation system is to connect items and users, solve the problem of information overload, and use different recommendation algorithms to associate users with items in a specific way so as to target different users and provide personalized services according to their interests recommend. |
URL | 查看原文 |
Language | 中文 |
Document Type | 学位论文 |
Identifier | https://ir.lzu.edu.cn/handle/262010/225132 |
Collection | 数学与统计学院 |
Recommended Citation GB/T 7714 | 潘娜. 基于融合模型的电影推荐算法研究[D]. 兰州. 兰州大学,2018. |
Files in This Item: | There are no files associated with this item. |
|