基于多时间尺度分析的电力负荷预测研究 | |
Alternative Title | Research on Power Load Forecasting Based on Multiple Time Scale Analysis |
刘海霞 | |
Thesis Advisor | 朱素玲 |
2018-04-14 | |
Degree Grantor | 兰州大学 |
Place of Conferral | 兰州 |
Degree Name | 硕士 |
Keyword | 负荷预测 多时间尺度分析 组合模型 NAR神经网络 |
Abstract | 短时电力负荷的准确预测在电网规划的技术层面和经济方面具有重要意义。本文基于近年来较流行的机器学习算法对短时电力负荷预测进行深入的研究:针对电力历史负荷的数据波动特点进行多时间尺度分析;根据静态和动态神经网络模型特点,在小波包分解的基础上,通过分析精度高、泛化能力强且适于处理时序数据的WNN、RBFNN、ENN和NAR神经网络模型,建立了基于GA遗传算法的组合模型和NAR回归型动态神经网络模型;为验证所提出理论的有效性,本文选择利用美国PJM区域2016.12.1~2017.11.30的小时电力负荷数据进行预测比较分析,另外选择澳大利亚新南威尔士州2016.12.1~2017.11.30的小时电力负荷数据证明本论文所提出模型的适用性。 |
Other Abstract | The accurate short term load forecasting is significant for power grid planning and economic development. Based on the popular machine learning algorithms, this paper studies the short term load forecasting. Firstly, analyses the characteristics and fluctuations of the historical electric load data with the multi time scale analysis technique. Secondly, proposes a combined model based on genetic algorithm (GA), WNN, RBFNN and ENN for short-term power load forecasting. Thirdly, builds one NAR neural network for short-term power load forecasting. Finally, two hourly electricity load datasets (Dec. 01, 2016 to Nov. 30, 2017, Pennsylvania—New Jersey—Maryland, American; Dec. 01, 2016 to Nov. 30, 2017, the State of New South Wales, Australia) are selected to test the effectiveness and generalization ability of the combined and NAR models. |
URL | 查看原文 |
Language | 中文 |
Document Type | 学位论文 |
Identifier | https://ir.lzu.edu.cn/handle/262010/225184 |
Collection | 数学与统计学院 |
Recommended Citation GB/T 7714 | 刘海霞. 基于多时间尺度分析的电力负荷预测研究[D]. 兰州. 兰州大学,2018. |
Files in This Item: | There are no files associated with this item. |
|