| 关于具有某种断面的半群的若干研究 |
Alternative Title | Some studies on semigroups with some kind of transversals
|
| 孔祥军 |
Thesis Advisor | 罗彦锋
|
| 2011-06-03
|
Degree Grantor | 兰州大学
|
Place of Conferral | 兰州
|
Degree Name | 博士
|
Keyword | 正则半群
逆半群
纯正半群
富足半群
恰当半群
拟恰当半群
逆断面
纯正断面
恰当断面
拟恰当断面
|
Abstract | 本文主要研究具有纯正断面的正则半群与分别具有恰当断面和拟恰当断面的富足半群,共分六章.第一章为本文的引言和预备知识.第二章引入左单纯正断面的概念.给出例子说明左单纯正断面是拟理想纯正断面的真推广.研究了具有左单纯正断面的正则半群并给出了这类半群的一个结构定理.第三章引入 ~$S$-纯正断面的概念.给出例子说明~$S$-纯正断面是左单纯正断面的真推广. 给出了具有~$S$-纯正断面的正则半群的一个结构定理. 作为此结构定理的应用,得到了具有拟理想纯正断面的正则半群与具有逆断面的正则半群的结构定理.第四章探讨富足半群的恰当断面之间的关系. 证明了若富足半群 ~$S$
具有一个可乘恰当断面, 则 ~$S$ 的任一拟理想恰当断面是可乘的.
引入并研究弱可乘恰当断面,得到恰当断面是可乘的与弱可乘的和拟理想的关系.研究了富足半群的拟理想恰当断面的乘积问题.第五章研究具有~$S$-恰当断面的富足半群.用两种不同的方法给出了分别具有拟理想~$S$-恰当断面和~$S$-恰当断面的富足半群的结构.第六章研究具有可乘拟恰当断面的富足半群.得到了具有可乘拟恰当断面的富足半群的若干性质,并给出了这类半群的一个新的结构定理. |
Other Abstract | This thesis consists of six chapters. We mainly investigate
regular semigroups with orthodox transversals and abundant
semigroups with adequate transversals and quasi-adequate
transversals respectively.The first chapter is introduction and preliminaries.In Chapter 2, the concept of left simplistic orthodox transversals is introduced. An example is given to demonstrate that left simplistic orthodox transversals are proper generalizations of quasi-ideal orthodox transversals.Regular semigroups with left implistic orthodox transversals are explored and a structure theorem for this class of semigroups is also established.In Chapter 3, the concept of $S$-orthodox transversals is introduced. An example is given to demonstrate that $S$-orthodox transversals are proper generalizations of left simplistic orthodox
transversals. A structure theorem for regular semigroups with $S$-orthodox transversals is established. As applications of this structure theorem, the structures of regular semigroups with quasi-ideal orthodox transversals and inverse transversals respectively are acquired. In Chapter 4, relationship between the adequate transversals of an abundant semigroup is explored. It is proved that if an abundant semigroup $S$ has a multiplicative adequate transversal, then every quasi-ideal adequate transversal of $S$ is multiplicative. Weakly multiplicative adequate transversals are introduced and explored. The connection of an adequate transversal between the properties of
being multiplicative, weakly multiplicative and a quasi-ideal is obtained. The product of quasi-ideal adequate transversals of an abundant semigroup is investigated.
In Chapter 5, abundant semigroups with $S$-adequate transversals are studied. The structures of abundant semigroups with quasi-ideal $S$-adequate transversals and $S$-adequate transversals respectively are established by means of two methods.
In Chapter 6, abundant semigroups with multiplicative quasi-adequate transversals are studied. Some properties of abundant semigroups with multiplicative
quasi-adequate transversals are characterized. A new structure theorem for this class of semigroups is also established. |
URL | 查看原文
|
Language | 中文
|
Document Type | 学位论文
|
Identifier | https://ir.lzu.edu.cn/handle/262010/225352
|
Collection | 数学与统计学院
|
Recommended Citation GB/T 7714 |
孔祥军. 关于具有某种断面的半群的若干研究[D]. 兰州. 兰州大学,2011.
|
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.