| 关于Petrov-Galerkin谱方法的两个问题研究 |
Alternative Title | Research on Petrov-Galerkin Spectral method for two problems
|
| 赵晓丹 |
Thesis Advisor | 伍渝江
|
| 2009-05-30
|
Degree Grantor | 兰州大学
|
Place of Conferral | 兰州
|
Degree Name | 硕士
|
Keyword | 非线性发展方程
Petrov-Galerkin谱方法
KdV-Burgers方程
dual-Petrov-Galerkin谱方法
|
Abstract | 本文主要考虑了两类方程的Petrov-Galerkin谱方法:(2m+1)阶非线性发展方程和KdV-Burgers方程。对于第一类方程,我们利用Petrov-Galerkin谱方法分析了其半离散格式的稳定性和收敛性及其全离散格式的收敛性;对于第二类方程,我们利用Jie Shen提出的dual-Petrov-Galerkin谱方法给出了KdV-Burgers方程的全离散格式,并证明了其收敛性;最后给出数值例子来验证我们的理论分析。 |
Other Abstract | We mainly consider Petrov-Galerkin spectral method for two types of equation in this paper:(2m+1)-order nonlinear evolution equation and KdV-Burgers' equation. For the first-type equation, we use the Petrov-Galerkin spectral method to analysis the stability and convergence of its semi-discrete and the convergence of its full-discrete scheme; for the second-type equation, we use the dual-Petrov-Galerkin spectral method introduced by Jie Shen to present the full-discrete scheme of KdV-Burgers' equation, prove its convergence and give numerical examples to verify our theoretical analysis. |
URL | 查看原文
|
Language | 中文
|
Document Type | 学位论文
|
Identifier | https://ir.lzu.edu.cn/handle/262010/225368
|
Collection | 数学与统计学院
|
Recommended Citation GB/T 7714 |
赵晓丹. 关于Petrov-Galerkin谱方法的两个问题研究[D]. 兰州. 兰州大学,2009.
|
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.