兰州大学机构库 >数学与统计学院
工件加工时间可变的排序模型
Alternative TitleScheduling Models with Job's Varying Processing Times
孙丽
Thesis Advisor王海明
2009-06-02
Degree Grantor兰州大学
Place of Conferral兰州
Degree Name硕士
Keyword排序 学习效应 恶化 多项式时间算法 成组技术
Abstract本文主要讨论了一类带学习效应和恶化的单机及平行机排序问题和一类带恶化的单机成组排序问题,对每类提出的问题都给出了相应的多项式算法. 第二章研究了一类单机排序问题及流水作业排序问题.对所提模型的单机排序问题分别按经典排序问题中对应问题的算法得到了最优排序;对所提模型的流水作业排序问题,证明了当目标函数为极小化时间表长和极小化总完工时间时问题也是多项式可解的. 第三章讨论了一类单机成组排序问题.对于目标函数为极小化时间表长时给出了多项式算法,并对每组都含有相等个数工件的极小化总完工时间问题也证明了是多项式可解的.
Other AbstractIn this paper, we study scheduling problems of single-machine and flow shop with learning effects and deteriorating jobs . At the same time, we consider single-machine scheduling problems with deterioration under group technology. We give polynomial-time algorithms to problems we introduced. In the second chapter, we discuss single-machine scheduling problem model and flow shop problem model To single-machine scheduling problems under discussed model, we prove they can be solved in polynomial time under the rules which are used in classic scheduling problems. To flow shop schedule problems under discussed model, when minimizing makespan and total completion times, we give polynomial-time algorithms to the problems under the SPT rule. In the third chapter, we introduce single-machine scheduling.We give polynomial-time algorithm when it is to minimize makespan. In addition, it can also be solved in polynomial time to minimize total completion times when the total number of jobs in every group is the same. problems under group technology model
URL查看原文
Language中文
Document Type学位论文
Identifierhttps://ir.lzu.edu.cn/handle/262010/225379
Collection数学与统计学院
Recommended Citation
GB/T 7714
孙丽. 工件加工时间可变的排序模型[D]. 兰州. 兰州大学,2009.
Files in This Item:
There are no files associated with this item.
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[孙丽]'s Articles
Baidu academic
Similar articles in Baidu academic
[孙丽]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[孙丽]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.