| 分数阶偏微分方程的小波自适应求解 |
Alternative Title | Wavelet Adaptive Method for Solving Fractional Partial Differential Equations
|
| 张治江 |
Thesis Advisor | 邓伟华
|
| 2014-05-29
|
Degree Grantor | 兰州大学
|
Place of Conferral | 兰州
|
Degree Name | 硕士
|
Keyword | 分数阶偏微分方程
小波自适应
快速小波变换
小波压缩
|
Abstract | 本文主要考虑了小波自适应方法在求解分数阶偏微分方程中的应用。分数阶算子的非局部化特征使得分数阶微分方程的求解需要很大的计算量,此时对于一类含有局部结构的问题自适应方法较一致性方法具有更大的优势。
我们利用小波的压缩性,把小波逼近系数的量级作为一个指示子去设计自适应算法,动态的调整逼近基底中小波的位置和数目,在保证计算精度的同时显著的降低了计算花费。这些算法简单易行,数值算例验证了它们的有效性。 |
Other Abstract | In this paper, we consider the wavelet adaptive methods for solving fractional partialvdifferential equations. Due to
the non-Locality characteristic of fractional operators,
the solutions for the fractional differential equations require a large amount of computation. For a class of problems which containing the local structure, the adaptive
approach compared with the uniform method tends to a great of advantage.
We use the magnitude of the wavelet approximation
coefficients to design an adaptive algorithm, which dynamically adjust the location and number of basis
functions, ensuring the accuracy and significantly reducing the computational cost. These algorithms are simple, some numerical examples are given to verify their validity. |
URL | 查看原文
|
Language | 中文
|
Document Type | 学位论文
|
Identifier | https://ir.lzu.edu.cn/handle/262010/225422
|
Collection | 数学与统计学院
|
Recommended Citation GB/T 7714 |
张治江. 分数阶偏微分方程的小波自适应求解[D]. 兰州. 兰州大学,2014.
|
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.