兰州大学机构库 >数学与统计学院
非线性薛定谔方程的几何性质
Alternative TitleThe Geometric Properties of Nonlinear Schrödinger Equation
王骥骏
Thesis Advisor赵敦
2014-06-22
Degree Grantor兰州大学
Place of Conferral兰州
Degree Name学士
Keyword非线性薛定谔方程 常挠率参数曲面 快速傅里叶变换 MATLAB
Abstract非线性薛定谔方程不仅在孤立子研究中具有十分重要的意义,而且具有广泛的应用背景;许多物理问题的数学模型都可以归结为非线性薛定谔方程。本文从微分几何的角度考察非线性薛定谔方程,研究其孤子曲面的几何特性;最后基于MATLAB,采用有限快速傅里叶变换算法,得到非线性薛定谔方程的数值解及仿真曲面。
Other AbstractNonlinear schrodinger equation not only has the extremely vital significance in the study of soliton theory, but also has a wide application background. The mathematical model of many physical problems can be attributed to NLS equation. In this paper,we summarise the disscussion on the NLS equation from the view of differential geometry method to study characteristics of the soliton surfaces. We also get the numerical solution and the simulation curve via the finite Fast Fourier Transform (FFT) Algorithm based on MATLAB.
URL查看原文
Language中文
Document Type学位论文
Identifierhttps://ir.lzu.edu.cn/handle/262010/225448
Collection数学与统计学院
Recommended Citation
GB/T 7714
王骥骏. 非线性薛定谔方程的几何性质[D]. 兰州. 兰州大学,2014.
Files in This Item:
There are no files associated with this item.
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[王骥骏]'s Articles
Baidu academic
Similar articles in Baidu academic
[王骥骏]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[王骥骏]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.