| 非线性薛定谔方程的几何性质 |
Alternative Title | The Geometric Properties of Nonlinear Schrödinger Equation
|
| 王骥骏 |
Thesis Advisor | 赵敦
|
| 2014-06-22
|
Degree Grantor | 兰州大学
|
Place of Conferral | 兰州
|
Degree Name | 学士
|
Keyword | 非线性薛定谔方程
常挠率参数曲面
快速傅里叶变换
MATLAB
|
Abstract | 非线性薛定谔方程不仅在孤立子研究中具有十分重要的意义,而且具有广泛的应用背景;许多物理问题的数学模型都可以归结为非线性薛定谔方程。本文从微分几何的角度考察非线性薛定谔方程,研究其孤子曲面的几何特性;最后基于MATLAB,采用有限快速傅里叶变换算法,得到非线性薛定谔方程的数值解及仿真曲面。 |
Other Abstract | Nonlinear schrodinger equation not only has the extremely vital significance in the study of soliton theory, but also has a wide application background. The mathematical model of many physical problems can be attributed to NLS equation. In this paper,we summarise the disscussion on the NLS equation from the view of differential geometry method to study characteristics of the
soliton surfaces. We also get the numerical solution and the simulation curve via the finite Fast Fourier Transform (FFT) Algorithm based on MATLAB. |
URL | 查看原文
|
Language | 中文
|
Document Type | 学位论文
|
Identifier | https://ir.lzu.edu.cn/handle/262010/225448
|
Collection | 数学与统计学院
|
Recommended Citation GB/T 7714 |
王骥骏. 非线性薛定谔方程的几何性质[D]. 兰州. 兰州大学,2014.
|
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.