兰州大学机构库 >化学化工学院
基于稀土金属-有机框架的纳米反应器设计、组装及应用
Alternative TitleDesigning, Assembly and Application of Rare Earth Metal-organic Framework Nanoreactors
贾见果
Subtype硕士
Thesis Advisor唐瑜
2018-05-01
Degree Grantor兰州大学
Place of Conferral兰州
Degree Name硕士
Keyword金属-有机框架 双光子吸收-光动力学治疗 荧光共振能量转移 溶解氧检测
Abstract

随着纳米技术的不断发展, 基于纳米反应器的纳米材料的研究正在成为热点。纳米反应器是具有纳米结构的物质,能够提供纳米尺度的空间,使化学反应被限域在该纳米空间范围内。其中纳米金属-有机框架材料、纳米层状氢氧化物等纳米多孔类材料均可作为性能非常优异的纳米反应器,保证孔内物质间的高效能量传递,达到材料设计目的。在众多的金属-有机框架类材料中,稀土金属-有机框架和稀土层状氢氧化物的研究并不是很广泛,但是它们独特的结构以及自身的光学性质非常值得去探究其潜在价值。近年来,稀土发光材料的研究已经吸引越来越多的注意力,无论是在生物荧光探针,还是光电功能材料,生物小分子和金属离子检测,药物运输和生物成像以及催化等领域,均有相关的应用研究。稀土金属-有机框架是一种不仅具备金属-有机框架材料本身超高的比表面积、可调的孔径及易功能化的特点,还有稀土离子的本征发光性质,稀土元素作为纳米材料的发光中心,由于稀土离子的4f电子在f-f组态之间的跃迁,因此其特有的结构和能级也造就了稀土发光材料的许多特殊光学性质,如发射光谱涵盖范围广,荧光寿命长,以及发射波长不受周围配位场及环境的影响,因此可以发射出尖锐的线状光谱等。

本论文主要分为以下三个部分:

第一章:简要介绍基于稀土金属-有机框架材料和稀土层状氢氧化物的研究和应用现状。

第二章:用功能化的纳米Eu(III)金属-有机框架化合物构建纳米反应器,用于近红外激发和靶向双光子吸收光动力学治疗。

近来,作为潜在药物传输系统的纳米金属-有机框架化合物(NMOFs)和光动力学治疗越来越受到关注。本文基于NMOF化合物 Eu(BTC)DMF•H2O,通过负载光敏剂亚甲基蓝(MB)和用cRGD进行MOFs表面改性,设计合成出可用于光动力学治疗(PDT)的纳米探针MB@THA-NMOF-76@cRGD,实现了由NIR激发的靶向双光子吸收光动力治疗。探针的组装步骤包括:1. 用4,4'-三氟-1-(9-己基咔唑-3-基)-1,3-丁二酮(HTHA)和NMOF-76中的Eu(III)进行配位,完成溶剂辅助配体并入;2. 通过吸附法进行MB负载;3. 使用氨基功能化的[环状(精氨酸-甘氨酸-天冬氨酸-D-苯丙氨酸-赖氨酸)](cRGD)进行纳米粒子表面改性。 HTHA和Eu3+在近红外(NIR)激发下提供了具有双光子激发发光(TPL)功能的NMOF-76,激发波长为808 nm。由Eu3+发射的特征性615 nm的光可激发吸附在NMOF-76孔中的MB,产生单线态氧(1O2),从而实现光动力疗法。在MB@THA-NMOF-76 的表面上进行的cRGD修饰更好地实现了对生物细胞的相容性和对整合素αvβ3过表达的癌细胞靶向性。因此,该NMOFs纳米探针可用作靶向PDT疗法的纳米平台。论文取得的研究成果对智能发光稀土诊疗探针的发展具有一定的理论意义和应用价值。

第三章:基于卟啉的金属-有机材料在实时监测溶解氧方面的应用研究。

发光类的金属-有机框架(LMOFs)作为溶解氧(DO)浓度测定的探针是近来比较热点的话题。因此我们设计了一种基于卟啉衍生物结构的稀土金属-有机框架,作为一个新颖的对DO有磷光响应的多孔基质材料类探针。我们用TPPS(四苯基卟啉磺酸)作为氧气响应中心和MOF结构的桥连配体,然后和稀土金属共同担当荧光反馈部分。这种探针能够适应严酷的化学环境,并且基于不同pH环境有很好的光稳定性,能够准确反馈系统中DO的荧光强度。由于MOF结构中的纳米孔道和均匀分布的氧气进入位点,MOF结构表现出可逆的荧光响应和良好的Stern−Volmer淬灭关系。

Other Abstract

With the continuous development of nanotechnology, research on nanoreactors has drawn more and more attention. In the general, chemical reactors are generally specific chemical equipment such as reactors or glass reactors, but nanoreactors are nanomaterials or materials with nanostructures, nanoreactors provide a nanoscale space, so that the chemical reaction is restricted in this nano-space, reaction products with specific structures and properties can be obtained by controlling the size, material, and other reaction conditions of the nanoreactor. Among them, nano metal-organic framework materials and nano layered hydroxides can be used as nano-reactors with excellent performance to ensure efficient energy transfer between materials in the pores and achieve the purpose of material design. In many metal-organic framework materials and rare earth metal-organic frameworks and rare earth layered hydroxides are not widely studied, but their unique structures and their optical properties are well worth exploring for their potential value. Recently, this type of luminescent material has received more and more attention, and has been applied in the fields of photoelectric functional materials, bioluminescent probes, biological small molecules and metal ion detection, drug transport, bioimaging, and catalysis. Rare-earth metal-organic frameworks are characterized not only by the high specific surface area of metal-organic framework materials, their adjustable pore size and easy functionalization, but also the intrinsic luminescent properties of rare earth ions, and the luminescence property of rare earth elements as nanomaterials. In the rare earth ions center, because of the luminescence originates from f-f electron transitions in the 4fn shell, its unique structure and energy level also create many special optical properties of rare earth luminescent materials, such as wide emission spectrum, long fluorescence lifetime, and the wavelength is not affected by the surrounding coordination field and environment, and therefore it can emit sharp line spectra.

The dissertation is mainly divided into following three chapters:

Chapter 1: A brief introduction of the research and application status of rare earth metal-organic framework materials and rare earth layered hydroxides.

Chapter 2: A nanoreactor was constructed using functionalized nanoscale Eu(III) metal-organic framework compounds for near-infrared excitation and targeted two-photon absorption photodynamic therapy.

Recently, nanoscale Metal-Organic Frameworks (NMOFs) and photodynamic therapy have become increasingly concerned as potential drug therapy systems. Based on the NMOFs: Eu (BTC) DMF • H2O, the nano-probe MB@THA-NMOF@cRGD was designed and synthesized by surface modification of cRGD and the absorption of photosensitizer methylene blue (MB), achieved NIR-excited targeted photodynamic therapy. The assembling of the probe including three steps: 1. Solvent assistant ligand cooperation of NMOF-76 with 4, 4,4-trifluoro-1-(9-hexylcarbazole-3-yl)-1,3-butanedione (HTHA); 2. The absorption of MB; 3. Surface modification of nanoparticles with cRGD. The coordination between HTHA and Eu3+ provide NMOF-76 with two-photon excited luminescence (TPL) function under near-infrared (NIR) excitation. Under the laser excitation wavelength of 808 nm, MB in the pore of NMOF-76 can be excited by the 615 nm light emission of Eu3+, resulting in singlet oxygen (1O2) generation and achieving photodynamic therapy. The surface modification with cRGD achieves the biological compatibility and the targeting,due to the overexpression of integrin αvβ3 in cancer cell. Thus, the NMOF nanoprobe can be used as a nanoscale platform for PDT therapy. The research results have certain theoretical significance and application value to the development of smart luminescent rare earth diagnostic and therapeutic probes.

Chapter 3: Real-Time Monitoring of Dissolved Oxygen with Porphyrin-based Metal−Organic Materials.

Luminescent metal-organic frameworks (LMOFs) as probes for the determination of dissolved oxygen (DO) concentrations are a hot topic recently. Therefore, we designed a rare earth metal-organic framework based on porphyrin derivative structure as a novel porous matrix material probe with phosphorescent response to DO. We use m-Tetrakis(4-sulfonatophenyl)porphine (TPPS) as a bridge ligand for the oxygen response center and the MOF structure, and then together with rare earth metals act as a fluorescence feedback part. The probe can adapt to harsh chemical environments, and has good light stability based on different pH environments and can accurately feedback the fluorescence intensity of DO in the system. Due to the nanopore and uniformly distributed oxygen entry sites in the MOF structure, the MOF structure exhibits a reversible fluorescence response and a good Stern-Volmer quenching relationship.

URL查看原文
Language中文
Document Type学位论文
Identifierhttps://ir.lzu.edu.cn/handle/262010/237349
Collection化学化工学院
Recommended Citation
GB/T 7714
贾见果. 基于稀土金属-有机框架的纳米反应器设计、组装及应用[D]. 兰州. 兰州大学,2018.
Files in This Item:
There are no files associated with this item.
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[贾见果]'s Articles
Baidu academic
Similar articles in Baidu academic
[贾见果]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[贾见果]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.