兰州大学机构库 >数学与统计学院
R^3中几类半线性非局部方程解的一维对称性结果
Alternative TitleA One-Dimensional Symmetry Result for a few class of Semilinear Nonlocal Equations in R^3
刘家熙
Thesis Advisor李万同
2019-04-02
Degree Grantor兰州大学
Place of Conferral兰州
Degree Name硕士
Degree Discipline应用数学
Keyword非局部算子 Allen-Cahn方程 非局部能量 De Giorgi猜想 一维对称性 Liouville型结果
Abstract本文的目标是得到三维欧式空间中带有不同核函数的几类非局部Allen-Cahn方程的解的一维对称性结果。首先考虑三维欧式空间中带有紧支集核函数的非局部算子对应的非局部Allen-Cahn方程
单调有界Layer-解的一维对称性,然后将结果推广到有限个带有紧支集的核的非局部算子相加得到的和算子对应的非局部半线性方程,最后讨论三维欧式空间中分数阶Allen-Cahn方程的单调有界解的一维对称性。类似于经典Allen-Cahn方程在三维欧式空间中的解的一维对称性的证明方法,本文的证明过程中主要利用了对非局部能量泛函的估计以及近期由Hamel等人得到的非局部算子的Liouville型结果。
Other AbstractThe aim of this paper is to obtain a one-dimensional symmetry result for a few class of nonlocal Allen-Cahn equations with different kernels in R^3.Firstly, we consider the nonlocal Allen-Cahn equation corresponding to nonlocal operators with compact support kernels in R^3. The results then are extended to the sum of a finite number of nonlocal operators with compact support. Finally, the one-dimensional symmetry result for monotone bounded solutions of fractional Allen-Cahn equation in R^3 is discussed. Similar to the proof of the one-dimensional symmetry result for the classical Allen-Cahn equation in R^3, in our proof we mainly use the estimates for nonlocal energy and a Liouville type result for nonlocal operators obtained by Hamel et al recently.
Pages46
URL查看原文
Language中文
Document Type学位论文
Identifierhttps://ir.lzu.edu.cn/handle/262010/342260
Collection数学与统计学院
Affiliation数学与统计学院
First Author AffilicationSchool of Mathematics and Statistics
Recommended Citation
GB/T 7714
刘家熙. R^3中几类半线性非局部方程解的一维对称性结果[D]. 兰州. 兰州大学,2019.
Files in This Item:
There are no files associated with this item.
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[刘家熙]'s Articles
Baidu academic
Similar articles in Baidu academic
[刘家熙]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[刘家熙]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.