兰州大学机构库 >数学与统计学院
交替迭代法及其在图像恢复中的应用
Alternative TitleAlternating Iteration Method and Its Application in Image Restoration
史琬滢
Subtype学士
Thesis Advisor黄玉梅
2019-04-30
Degree Grantor兰州大学
Place of Conferral兰州
Degree Name学士
Degree Discipline数学与应用数学
Keyword交替迭代法 收敛速度 凸规划 图像恢复 总变分
Abstract交替迭代法(ADM)是求解带有线性约束的凸优化问题的一种重要数值方法,这种方法将原问题目标函数等价分解为多个低维子问题进行迭代求解,从而高效地得到原优化问题的解。近年来,ADM法在图像处理、统计学习、连续介质力学、数学经济学等领域有着广泛的应用,因此对交替方向迭代法的研究具有重要的理论和实际意义。本文对交替迭代法及其收敛性进行了研究,表明了ADM法具有O(1/t)的收敛速度。同时利用交替迭代法求解了图像恢复的总变分模型,实验结果说明,交替迭代法能有效地应用于图像恢复问题的求解中,快速地得到具有高质量恢复结果的图像。
Other AbstractThe alternating iteration method (ADM) is an important numerical method for solving convex optimization problems with linear constraints. This method decomposes the objective function of the original problem into several low-dimensional sub-problems for iterative solution. Thus, the solution of the original optimization problem can be obtained efficiently. In recent years, the ADM algorithm has been widely used in many fields, for instance, image processing, statistical learning, continuum mechanics, mathematical economics and so on. In this paper, the alternating iteration method and its related theories are studied. We provide a unified proof to show the O(1/t) convergence rate for ADM. Then we apply ADM to solving the total variation model for image restoration. The numerical experimental results show that the alternating iteration method can quickly restore the image, and it can get good visuals qualities.  
Pages20
URL查看原文
Language中文
Document Type学位论文
Identifierhttps://ir.lzu.edu.cn/handle/262010/342344
Collection数学与统计学院
Affiliation
数学与统计学院
First Author AffilicationSchool of Mathematics and Statistics
Recommended Citation
GB/T 7714
史琬滢. 交替迭代法及其在图像恢复中的应用[D]. 兰州. 兰州大学,2019.
Files in This Item:
There are no files associated with this item.
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[史琬滢]'s Articles
Baidu academic
Similar articles in Baidu academic
[史琬滢]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[史琬滢]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.