| Flexible transmission control of mode conversion in a TiO2 cladding silicon subwavelength waveguide by engineering inter-waveguide mode coupling |
| Chen, Haoxiang; Sun, Qike; Wang, Junqing; Yang, Jianhong; Jia, Hao |
| 2023-10-01
|
Online publication date | 2023-05
|
Source Publication | OPTICS AND LASER TECHNOLOGY
Impact Factor & Quartile |
ISSN | 0030-3992
|
Volume | 165 |
page numbers | 6
|
Abstract | Mode conversions can be effectively accomplished in coupled mode silicon photonic waveguide systems when specific phase-matching conditions are fulfilled. However, conventional device using such principles is optimized to a certain coupling length, which can only achieve a fixed energy transmission. Moreover, the conventional method to tune the refractive index is insufficient for effective transmission manipulation. In this paper, we systematically analyze the coupling strategy in the silicon-based dual-waveguide coupled-mode system, and propose an effective transmission tuning method by engineering the inter-waveguide mode coupling. We introduce titanium dioxide as cladding material to a subwavelength waveguide-based directional coupler to change the refractive index variable, which is both CMOS compatible and has negative thermo-optical coefficient. By implementing different temperature on waveguide, the dispersion curves of stripe waveguide and subwavelength waveguide can be tailored independently, thus the coupling coefficient can be changed without changing the geometry of waveguide. We demonstrate prototype of TE0-TE1 multi-mode variable optical attenuator. The output can be tuning 0.05%–96.4% of input energy when the temperature rises 0-400 K. We extend the device to TE2 and TE3 with output intensities of 0.04-91.4% and 0.04-88.8% over the temperature rise range of 317 K and 214 K, respectively. Cascading mode converters for different mode-order, we can arbitrarily mix the mode percentage in output waveguide to generate different interference patterns. We demonstrate a reconfigurable optical tweezer using this setup, which is capable of manipulating nanoscale particles. We envision that such methodology can be implemented in flexible multimode optical networks and labs on chip. © 2023 Elsevier Ltd |
Keyword | Cladding (coating)
Optical waveguides
Phase matching
Photonic devices
Silicon photonics
Titanium dioxide
Transmissions
Coupled mode
Effective transmission
Flexible transmissions
Mode conversions
Mode coupling
Multimodes
Sub-wavelength structures
Sub-wavelength waveguides
Temperature rise
Waveguides modes
|
Publisher | Elsevier Ltd
|
DOI | 10.1016/j.optlastec.2023.109577
|
Indexed By | EI
; SCIE
|
Language | 英语
|
WOS Research Area | Optics
; Physics
|
WOS Subject | Optics
; Physics, Applied
|
WOS ID | WOS:001001036700001
|
EI Accession Number | 20232014088590
|
EI Keywords | Refractive index
|
EI Classification Number | 602.2 Mechanical Transmissions
; 713 Electronic Circuits
; 714.3 Waveguides
; 741.1 Light/Optics
; 741.3 Optical Devices and Systems
; 804.2 Inorganic Compounds
|
Original Document Type | Journal article (JA)
|
Citation statistics |
|
Document Type | 期刊论文
|
Identifier | https://ir.lzu.edu.cn/handle/262010/529350
|
Collection | 兰州大学
|
Corresponding Author | Jia, Hao |
Affiliation | School of Physical Science and Technology, Lanzhou University, Lanzhou; 730000, China |
First Author Affilication | Lanzhou University
|
Corresponding Author Affilication | Lanzhou University
|
Recommended Citation GB/T 7714 |
Chen, Haoxiang,Sun, Qike,Wang, Junqing,et al. Flexible transmission control of mode conversion in a TiO2 cladding silicon subwavelength waveguide by engineering inter-waveguide mode coupling[J].
OPTICS AND LASER TECHNOLOGY,2023,165.
|
APA |
Chen, Haoxiang,Sun, Qike,Wang, Junqing,Yang, Jianhong,&Jia, Hao.(2023).Flexible transmission control of mode conversion in a TiO2 cladding silicon subwavelength waveguide by engineering inter-waveguide mode coupling.OPTICS AND LASER TECHNOLOGY,165.
|
MLA |
Chen, Haoxiang,et al."Flexible transmission control of mode conversion in a TiO2 cladding silicon subwavelength waveguide by engineering inter-waveguide mode coupling".OPTICS AND LASER TECHNOLOGY 165(2023).
|
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.