兰州大学机构库

Browse/Search Results:  1-10 of 127 Help

  Show only claimed items
Selected(0)Clear Items/Page:    Sort:
Image Segmentation using Fast Linking SCM 会议论文
Proceedings of the International Joint Conference on Neural Networks, Killarney, IRELAND, JUL 12-17, 2015
Authors:  Zhan, K(绽琨);  Shi, JH;  Li, QQ;  Teng, JC;  Wang, MY;  Zhan, K (reprint author), Lanzhou Univ, Sch Informat Sci & Engn, Lanzhou 730000, Gansu, Peoples R China.
Favorite  |    Submit date:2017/01/18
交叉皮层模型及其在图像处理中的应用 期刊论文
北京邮电大学学报, 2009, 卷号: 32, 期号: 4, 页码: 40-45
Authors:  绽琨;  张红娟;  马义德;  刘丽;  田乐;  Zhan, K. (ice.echo@gmail.com)
Favorite  |    Submit date:2016/07/15
交叉皮层模型  图像处理  分割  特征提取  平滑  Automatic Image Segmentation  De-noise  Edge Extraction  Firing Time  Image Smoothing  Internal Activity  Intersecting Cortical Model  Intersecting Cortical Models  Main Characteristics  Mathematical Descriptions  Performance Parameters  Segmentation  Smoothing  Variable Thresholds  Working Principles  
A novel explicit multi-focus image fusion method 期刊论文
Journal of Information Hiding and Multimedia Signal Processing, 2015, 卷号: 6, 期号: 3, 页码: 600-612
Authors:  Zhan, K(绽琨);  Teng, Jicai;  Li, Qiaoqiao;  Shi, Jinhui
Favorite  |    Submit date:2016/07/15
Better performance  Guided filters  Laplacians  Majority filters  Multi-focus  Multifocus image fusion  Quantitative evaluation  State of the art  
Mutual teaching for graph convolutional networks 期刊论文
Future Generation Computer Systems, 2021, 卷号: 115, 页码: 837-843
Authors:  Zhan, K(绽琨);  Niu, Chaoxi
Favorite  |    Submit date:2020/12/16
Batch data processing  Convolution  ForecastingBatch process  Citation networks  Convolutional networks  High confidence  Label propagation  State-of-the-art methods  Training strategy  Unlabeled samples  
Stationary Diffusion State Neural Estimation for Multiview Clustering 会议论文
ASSOC ADVANCEMENT ARTIFICIAL INTELLIGENCE, ELECTR NETWORK, FEB 22-MAR 01, 2022
Authors:  Liu, Chenghua;  Liao, Zhuolin;  Ma, Yixuan;  Zhan, K(绽琨)
Favorite  |    Submit date:2023/04/12
Diverse Non-Negative Matrix Factorization for Multiview Data Representation 期刊论文
IEEE Transactions on Cybernetics, 2018, 卷号: 48, 期号: 9, 页码: 2620-2632
Authors:  Jing Wang;  Feng Tian;  Hongchuan Yu;  Chang Hong Liu;  Zhan, K(绽琨);  Xiao Wang
Favorite  |    Submit date:2020/05/18
Linear programming  Manifolds  Data analysis  Clustering algorithms  Cybernetics  Convergence  Robustness  
Boosting classifiers for scene category recognition 期刊论文
Journal of Information Hiding and Multimedia Signal Processing, 2015, 卷号: 6, 期号: 4, 页码: 708-717
Authors:  Lu, Fu-Xiang;  Huang, Jun;  Zhan, K(绽琨)
Favorite  |    Submit date:2017/01/16
Support vector machines  Classifiers  Graphic methods  Bag of words  Boosting  Computationally efficient  Heterogeneous features  Interest Point Detectors  Multi-class support vector machines  Pyramid histogram of words  Scene category recognition  
Cross-utilizing hyperchaotic and DNA sequences for image encryption 期刊论文
JOURNAL OF ELECTRONIC IMAGING, 2017, 卷号: 26, 期号: 1
Authors:  Zhan, K(绽琨);  Wei, Dong;  Shi, Jinhui;  Yu, Jun
Favorite  |    Submit date:2017/05/09
image encryption  hyperchaotic system  global bit scrambling  DNA computing  
The application of the combinatorial optimization problems based on preventive feedback pulse coupled neural network 会议论文
2011 3rd International Workshop on Intelligent Systems and Applications, ISA 2011 - Proceedings, Wuhan, China, May 28, 2011 - May 29, 2011
Authors:  Feng, Xiaowen;  Zhan, K(绽琨);  Ma, Yide;  Feng, X. (fengxw05@163.com)
Favorite  |    Submit date:2017/01/18
Neural networks  Algorithms  Combinatorial optimization  Intelligent systems  Optimization  auto-wave  Combination optimization  Combinatorial optimization problems  preventive feedback  Pulse Coupled Neural Network  Searching speed  Solution space  Space complexity  Triangle inequality  
Multimodal image seamless fusion 期刊论文
JOURNAL OF ELECTRONIC IMAGING, 2019, 卷号: 28, 期号: 2
Authors:  Zhan, K(绽琨);  Kong, Lingwen;  Liu, Bo;  He, Ying
Favorite  |    Submit date:2019/10/11
structure extraction  spatial information  image fusion